Интеграл и его вычисление
Определение. Множество первообразных данной функции  
называют неопределённым интегралом (общим интегралом)
 .
 Определение. Определенным интегралом функции f(x) на отрезке
  называется число, равное площади части плоскости, ограниченной
прямыми  ,  , кривой   и осью  .
 
Формула вычисления определенных интегралов
  (Формула
Ньютона-Лейбница).
Площадь криволинейной трапеции – части плоскости,
ограниченной прямыми  , , где , кривой   и осью Ox, находится по
формуле
 
 
Если фигура ограничена сверху кривой  , а снизу
— кривой  для всех   , то ее площадь вычисляется по формуле:
 
 
Объем тела вращения, образованного вращением вокруг оси Ox
криволинейной трапеции  ,
равен
 
 
 
   Оставить комментарий
   Сообщить об ошибке
 |